欢迎光临
我们一直在努力

文因互联CEO鲍捷:做聊天机器人有哪些坑?

我自己在某厂做了两年语音个人助理,后来自己出来创业,首先就否定了这个方向,或者它的变种(如问答系统、智能音箱、客服机器人、聊天机器人、陪伴机器人等等,各自有软件和硬件的版本),以下统称为Chatbot。

爬科技树不是一朝一夕

我估计中国过去几年,各种不同名目的对话型“机器人”的公司,从软件到硬件的,数百家是有的,也许有一千家?有一次,在一个会议上遇到一个公司,想做这个事情,想找一个“领军人物”来带,领导十多个人。我想,这个公司可能大大低估了做这个事情的难度:这种“领军人物”在中国可能不超过20个,也许只有10个?十多个人也难以做出一个工业可用的系统。就是有所谓的领军人物,有丰富经验的,想把工程重建,也不是短期可以奏效的。这个东西真的是没有捷径。

2012年随着Siri的发布,有一波中国的copycat,除了几个大厂的,大部分很快就灭了。过去一两年随着深度学习、知识图谱又起来一波。我认为其中的大部分是炒概念,超出现在的技术能达到的能力,两三年内就会群灭。

我觉得这个东西,属于典型的系统集成创新,只适合大厂战略布局用。大厂做这事,并不在乎场景的冷启动。而对创业公司,无论是技术链条长度,还是商业模式启动的困难,都是超出一般公司体量的。现在大家都想从问答、个人助理、目标达成的角度来切入。大企业玩玩可以,对小企业,想颠覆,不能走这条路,技术链太长,商业模式链更长。传统搜索肯定要被别的取代,但不能是直接拼大厂的长处这样。

往大了说,我对这一轮人工智能的几个热点应用——语音个人助手,问答系统,基于视觉的自动驾驶——都持悲观态度。我认为这种“准图灵测试”类产品,都超越了当前的盈利前沿,大规模应用是不现实的。例外是政府(特别是军方)和某些大公司不计成本地布局,瞄准十年之后。其他群众吃瓜围观就好。

各大厂推出的度秘、小冰、Cortana、Google Now,还有搜狗、京东、腾讯等等各种产品,技术上都各有惊艳之处。未来怎么样,我也很难现在做出评价。问答系统六个层次:基础搜索、词联想、本体知识库,短程关系、长程关系、基于上下文的自由问答,现在大家也基本只做到了短程关系,长程关系以上都要靠各种“人工”。爬科技树,绝非一朝一夕。

科技树是要爬的。导弹这种大家很容易理解,每一种零件,每一种生产工具,每一种生成工具的机器,缺一种都不行。钱学森学到了导弹的一切,回中国建立这个工业也花了三十年。对于问答系统这种软件,大家可能不太容易直观理解,其实也是同样的,做一个管用的之前要攻克的小问题太多了。就是别人把全套解决方案告诉你了,你都不一定能复制出来,因为还得有一整套的工业体系在后面支撑才行。从知识提取,知识存储,知识表达,知识检索,到人机交互、知识库,不知道多少个小零件要逐一打造。所以软件产业也和其他工业一样,要老老实实爬科技树。

Siri的创始人80年代就是Lisp机器的创业者。大家只关注到国防部和Siri那部分渊源(美国政府在CALO上投了1.5亿美元。Siri独立后,风投又投了2400万。苹果花了大概1.5-2.5亿美元买Siri。这个买卖真是合算),哪里想到它成立前的二十多年,它的创始人就把知识表达的坑全趟了一遍了。所以世界上没有无缘无故的成功,也没有捷径。

一些坑

机器善于做短程关系的查找(lookup),一层,罕见的情况下可以做两层。长程关系的发现(discovery)是机器做不好的,只能由人来写,最后变成规则机器执行。那些Siri里有趣的回答,都是人写的,和机器智能无关。

问答系统的现在逐渐从基于知识库的,发展到基于检索的,或者是从基于规则的,发展到基于数据的。但QA这事,至少目前,不是说数据足够多就行。特别是,数据再多,其中高质量数据(特别是结构化语义数据)有多少。实战一下就知道,靠统计机器学习来挖掘高质量数据,难度太大了,完全不实用。对问题和答案都需要NLP,其间检索和排序算法都是新的课题,需要多种方法的综合。

各种语音交互加摄像头识别产品,过去以app的形式承载,一直没有抓住用户的痛点,没有进入主流(除了被强推的siri)。所以最近两年,厂商开始试图用物理硬件来跑这些app,套个人形的塑料壳称为“机器人”。应用也逐渐细分,如儿童、恋爱、健康、娱乐等等。这些都是有益的尝试,但是还是忽悠居多。

特别是最近的一些“智能”玩具机器人(儿童机器人、陪伴机器人),基本看不懂。我买了个1000块的某某儿童对话机器人来玩,头5分钟大家都很兴奋,然后就没有然后了。关键连开关都没有,又蠢又停不下来。然后给我们COO拿回家给4岁的儿子玩,基本没法用,错得驴唇不对马嘴。强烈怀疑儿童陪伴、听歌、故事机器人现阶段实用了。后来又玩了几个市面上能买到的问答系统硬件。得到的结论是为时尚早,问答系统难以实用。

从外观来征服用户的,也是一条路。工业设计、硅胶科技的方法都有……看起来好看其实蛮重要的,有利于user acquisition。当然user retention就不够了,那还是要真本事。

在我看来,聊天机器人、个人助手这些东西的场景绝不是智能对话,不是智能对话,不是智能对话(重要的事情说三遍)。聊天机器人往问答系统的方向做本身就错了。问答系统实用化根本不可能。聊天机器人的定位应该是自动化,就酱。

我想,做语义技术的应用第一重要的是盈利,而不是扩大市场份额。要垄断一个小市场,竞争对手还不够强大,市场小到巨头们无利可图。语义搜索,一定要走K策略,深挖领域知识,而不是推出一个大而全,大而无用的知识库、问答系统、个人助手、搜索引擎blah blah。历史上那些走R策略的语义搜索都活不长。一些垂直的客服系统可能是有用的。我没做过那样的系统,所以也不知道其中的坑在哪里。

不仅技术上有无数的坑,要在工业界搞好一个问答的团队,那是真心不容易! 就是在IBM, 说服上层领导就花了好几年。而且摊子一大,各种山头光内耗就能搞死。另外,问答系统是最接近图灵测试的,如何巧妙地应对来自上面的各种不切实际的灵感,是多考验负责人的情商和智商啊。

SIRI的一些回顾

因为工作的关系,从2010年开始就在关注Siri。2014年的时候把过去几年关于Siri的微博汇总了一下,大概有一百条,全文见《Siri有关的微博》。两个短篇见《语义网的公司(6)Siri》《SIRI的贡献和价值》。也请参考以前为@好东西传送门 做的《关于问答系统博文的目录贴》。Apple的Siri专利,长,但是对于理解语义网技术如何在终端用户产品中运用,很值得一读。

凡是抄siri而大谈语音的,都是还没入门的(2013)。

Siri之类的系统,核心是模板系统和结构化数据库(as of 2012)。自然语言处理都是辅助的,真正提高F1分数的还是规则,模板这些“低级”技术。数据的质量和覆盖率也极其重要。现在看语音界面超前了,因为语音极大提高了人们对智能的期望。而且语音对环境和口音要求太高。光口音这一点不知赶走多少用户。

Siri之父Adam Cheyer和Steve Jobs在语音界面这一点上曾经有分歧。关于Siri的早期(还没有被Apple收购之前)的一些设计理念,参Adam Cheyer早年在Ontolog 上的两个谈话:Ontology Management in CALO, a Cognitive Assistant that Learns and Organizes ,和 Siri: An Ontology-driven Application for the Masses。后来的分歧,见【Siri之父Adam Cheyer:为你讲述Siri的前世今生】,里面说,Adam回忆起早期的Siri的时候,也说,“最开始的时候,Siri是没有声音的,只会以文本形式推送答案,这样结果是视觉化的,也更方便人们浏览。使用语音是Steve Jobs的提议,尽管我反对但是他一直坚持”。Cheyer最后只好走人,去创立了Viv,2016年被三星收购——虽然Viv也被标签为“AI语音助手”。

我认为当初Cheyer是对的,Jobs是错的。语音极大提高了用户的期望,极大提高了系统的误差。当年Adam Cheyer等对Siri的定位还是对的,就是个数据集成工具。被苹果买后Jobs强行要改成语音助手,Cheyer只好出走。现在可以看清楚,Jobs的定位违反技术规律。和当年的爱疯天线门一样,是Jobs以他天才的现实扭曲力场(Reality Distortion Field),试图扭曲技术规律的行为。遗憾的是,电磁波定律无法被扭曲,人工智能的的规律也无法被扭曲。

2012年还在研究语音助手的时候,曾拿Siri来反向工程,问各种结构的句子,反推她的模板系统到底是什么样子。结果发现她有些系统性的不能回答的结构,显然是没有对应的模板。最有意思的有人发现问“叫我老婆回家吃饭”,Siri回答“从现在开始叫你‘老婆回家吃饭’”。

(后来拿这套方法分析了其他一些知名的语音助手,结果也很有趣)

当然后来Siri也在演进。2013年iOS7上的siri,就有两点新东西。一是和Bing集成。很可能看中了satori知识图谱。短期内借助外力开发智能问答引擎,很合理。二是在宣传中突出语音对设备的控制和简单的检索,而非问答式的个人助手。Siri老团队的核心当时都已经走了。

近年的事情我就不清楚了。

时机问题和定位问题

The key is timing and positioning

迟早有一天,各种聊天机器人会以软件和硬件的形式进入我们的生活。但是重要的是路径设计,而非预期的愿景;市场的一步步的相对优势的争取,而非平台优势的争取。

True Knowledge(产品后来改名Evi)曾经是一家非常优秀的公司,它的知识库是可以和Google Knowledge Graph媲美的好东西。他家的自然语言理解模板也是值钱的。它可以说是起了大早,赶了个晚集的典型。2005年就开始搞知识图谱,问答系统也做到了世界领先,但是就是一直没搞好商业化,最后以地板价(2600万美元)卖给了Amazon。这个公司不懂得包装自己,好好弄弄说值10亿美元也是没有问题的。本来它可以更开放,以更积极的态度和上下游企业合作。它并没有必要成为Siri的直接竞争对手。它应该更快地进入美国本地服务市场——现在的几个竞争对手本来都比它拥有技术晚。可惜它被执行得更象一个研究项目而不是关心市场。现在Amazon的Echo音箱能做好,就有True Knowledge十几年的积累在里面。

我认为,早在2012年,直接做语音助手的黄金期已过,还没推出产品的公司就应该转进了。其实各种垂直领域都不错,用户体验会更好。语音不语音不是核心问题,Siri能做好的最后必然是拥有数据的公司。制造设备的公司会有幻觉,以为自己有用户数据,其实此数据非彼数据。自然语言理解虽然是语义搜索的重要辅助工具,但是当前阶段还不应是Value Proposition或者Key Technology。浅而高质量的数据关系才是。过于复杂的理解技术,不管是查询问题理解还是语义关系提取,现在都不足以大规模工业化。从这个角度,我认为Siri或者其他类似的产品,针对主流市场是危险的。

Tom Gruber(Siri CTO,我们语义网界的老前辈)曾说: the killer app for semantic technology is your life (online) 。这句话有好几层意思,背后代表着一整套哲学、方法论和技术路线。越实践,越觉得机会无穷。他也提出了intelligence at interface的一套理论,见他在SemTech08上的演讲,很有意思。但是我依然觉得 Siri 在timing上稍微早了一点。结构化数据的丰富程度还不足以支持 Siri 的大规模使用。模版系统的产生方式还不够规模化。基础NLP的精度还有待提高。类似产品不宜立即投放大众市场,应该再等几年的。

2012年,对Siri这类产品,舆论界曾有很高的预期。典型如【在血刃Google的路上,Siri会先被苹果给玩死么?】这个文章的作者低估了Siri作为任务引擎的困难程度。他也应该深入想一想,为什么原来的 Siri Assistant 比后来集成的Siri强大但是太慢?为什么集成Siri需要两年?这背后的结构化数据,服务集成,语义推理,语义理解,常识知识,要涵盖日常生活的方方面面,甚至不是苹果一家公司两三年能搞定的。

Siri的CEO Dag Kittlaus有一篇文章Siri Is Only The Beginning,看起来很像是科学美国人上2001年的那篇语义网奠基文章 The Semantic Web。 在十几年里我们低估了语义网的实现难度,当年对Siri的兴奋也许同样低估了问题的复杂性?在2012年我估计,这一天会到来,但恐怕不是5年内。现在到了2017年,可以认为当初的保守估计是合理的。或如文章里说,“when our kids are our age”,20-30年吧。

未来在哪里?

我不知道。我离开这个领域前沿也有三年了,所以知识也是落后的,很多黑科技可能我是不知道的。

(我唯一可以确定的,就是这个黑科技不是深度学习,肯定不是。)

大量的试错总是好的。现在市场上既然有数百个尝试者,最后总会有一些走出来的,其他的至少也为这个市场锻炼了人才。

作为创业团队,最好先做整个技术链条里一个组件的工作,不要试图上来整一个问答系统的全周期。即使是对一个垂直领域,这都是困难的事情。根据不同的团队构成,可以从数据库建造开始,或者可视化开始,或者NLP API,甚至人工的咨询服务。总之,整个大链条十几个大环节,先切一个,建立稳固的根据地,再循序渐进。

未必要在语音这条线上吊死。视觉的并行性和(sort of)可随机存取性是最宝贵的注意力资源。语音在并行性上有先天不足。纯文本也是。长远看,个人助理必然要更多使用视觉元素。狗尾草(Gowild)走AR(增强现实)路线,我觉得很有意思,这条路未来大有前景。

搜索引擎势必要智能化,势必要更多利用结构化数据(也就是知识图谱)。这有两个大方向,一是变成问答系统,依赖自然语言处理走硬AI,二是变成探索引擎,依赖人机交互。我以为第一条路是难以走通的,试图模拟人的智能,技术链条太长短期内不可能解决实际问题。第二条路才是现阶段可行的方法,交互式展示半结构化数据,利用人的智能弥补机器的不足。

也不能迷信垂直领域,比如金融。我不但不看好通用域问答系统,也不看好大部分的垂直领域问答系统,因为人的愚蠢是不分领域的。除非该垂直领域是小众的。具体的以后另专文说吧,这里篇幅太短说不清楚。

不过AI没有禁区,什么意外都有的。我也希望自己说的这些都被打脸。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。